Simultaneous three-dimensional velocimetry and thermometry in gaseous flows using the stereoscopic vibrationally excited nitric oxide monitoring technique.
Academic Article
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
We present a demonstration of the simultaneous measurement of spatially resolved three-component velocity and temperature in gaseous flow fields using a variant of the vibrationally excited nitric oxide monitoring (VENOM) technique, based on planar laser induced fluorescence and molecular tagging velocimetry methods. Three-component velocity determinations were derived from two-dimensional molecular tagging velocity measurements employing sequential fluorescence image pairs obtained simultaneously by two cameras in stereoscopic configuration. Probing two different rotational states of nitric oxide (X2, ''=1), produced via fluorescence and collisional quenching from initial excitation to the A +2 state, for the sequential velocimetry images allows simultaneous determination of the temperature field. Experimental measurements of velocity and temperature across an oblique shock result in mean values within 21 m/s for the three components of velocity and 20 K for planar temperature when compared to oblique shock calculations.