Unimolecular dissociation reactions of methyl benzoate radical cation. Academic Article uri icon

abstract

  • The blackbody infrared radiation induced dissociation of methyl benzoate (C8H8O2(+*)) radical cation was investigated by using a Fourier transfer ion cyclotron resonance mass spectrometer equipped with a resistively heated (wire temperatures of 400-1070 K) wire ion guide. We observed product ion branching ratios that are strongly dependent upon wire temperature. At low temperatures (670-890 K) the major product ion C7H8 (+*) (m/z 92), which is formed by loss of CO2, and at higher temperatures (above 900 K), loss of methoxy radical ((*)OCH3) competes with loss of CO2. The energies of the various reactant ions and transition states for product ion formation were estimated by using density functional theory molecular orbital calculations, and a proposed mechanism for the dissociation chemistry of C8H8O2 (+*) involving a multistep rearrangement reaction is tested using the Master Equation formalism.

published proceedings

  • J Phys Chem A

author list (cited authors)

  • Huang, Y., Peterman, S., Tichy, S. E., North, S. W., & Russell, D. H.

citation count

  • 1

complete list of authors

  • Huang, Yiqun||Peterman, Scott||Tichy, Shane E||North, Simon W||Russell, David H

publication date

  • November 2008