A theoretical investigation of ruthenium-catalyzed alkene hydrosilation: evidence to support an exciting new mechanistic proposal.
Academic Article
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
The mechanism of ethylene hydrosilation catalyzed by the ruthenium silylene cation [Cp*(P(i-Pr)3)Ru(H)2(SiH2)-OEt2]+ has been investigated with B3LYP density functional theory. Calculations using the model cation [Cp(PH3)Ru(H)2(SiH2)-OMe2]+ indicate that the most favorable catalytic cycle is the new mechanism proposed by Glaser and Tilley that involves ethylene insertion into a silicon-hydrogen bond remote from the ruthenium center. All other pathways, including those based on Chalk-Harrod and modified Chalk-Harrod mechanisms that include ethylene coordination to ruthenium, are energetically disfavored.