Synthesis and Structure of Ca18Li5In25.07: A Novel Intergrowth of Li-Centered In12 Icosahedral Clusters and Electron-Precise Zintl Layers Academic Article uri icon

abstract

  • A new ternary polar intermetallic, Ca(18)Li(5)In(25.07), was obtained from high-temperature reactions of the elements in welded Nb tubes. Its crystal structure, established by single-crystal X-ray diffraction, was found to crystallize in the orthorhombic space group Cmmm (No. 65). Unit cell parameters are a = 9.9151(6) A, b = 26.432(2) A, and c = 10.2116(6) A; Z = 2. The structure of Ca(18)Li(5)In(25.07) features two distinct types of indium anionic layers. An "electron-deficient" layer is made up of Li-centered In(12) icosahedra that are interconnected by bridging planar In(4) units and In atoms. A second In(3)(5-) layer is an electron-precise Zintl layer formed by fused four-, five-, and six-membered rings of three- and four-bonded indium atoms. The two distinct layers are alternately stacked and linked into a complex three-dimensional network. Vacancies are observed to occur only at the In(12) icosahedral and the bridging indium units within the "electron-deficient" layers. Magnetic property measurements indicate that Ca(18)Li(5)In(25.07) exhibits temperature-independent paramagnetism consistent with metallic behavior. Band structure calculations were performed to elucidate the role of defects and vacancies in the electronic structure of the electron-deficient "metallic" Zintl phase.

author list (cited authors)

  • Mao, J., Goodey, J., & Guloy, A. M.

publication date

  • January 1, 2003 11:11 AM