13C NMR snapshots of the complex reaction coordinate of pyridoxal phosphate synthase. Academic Article uri icon


  • The predominant biosynthetic route to vitamin B6 is catalyzed by a single enzyme. The synthase subunit of this enzyme, Pdx1, operates in concert with the glutaminase subunit, Pdx2, to catalyze the complex condensation of ribose 5-phosphate, glutamine and glyceraldehyde 3-phosphate to form pyridoxal 5'-phosphate, the active form of vitamin B6. In previous studies it became clear that many if not all of the reaction intermediates were covalently bound to the synthase subunit, thus making them difficult to isolate and characterize. Here we show that it is possible to follow a single turnover reaction by heteronuclear NMR using (13)C- and (15)N-labeled substrates as well as (15)N-labeled synthase. By denaturing the enzyme at points along the reaction coordinate, we solved the structures of three covalently bound intermediates. This analysis revealed a new 1,5 migration of the lysine amine linking the intermediate to the enzyme during the conversion of ribose 5-phosphate to pyridoxal 5'-phosphate.

published proceedings

  • Nat Chem Biol

author list (cited authors)

  • Hanes, J. W., Keresztes, I., & Begley, T. P.

complete list of authors

  • Hanes, Jeremiah W||Keresztes, Ivan||Begley, Tadhg P

publication date

  • January 1, 2008 11:11 AM