Systems in which nanoscale components of different types can be captured and/or released from organic scaffolds provide a fertile basis for the construction of dynamic, exchangeable functional materials. In such heterogeneous systems, the components interact with one another by means of programmable, noncovalent bonding interactions. Herein, we describe polymers that capture and release functionalized nanoparticles selectively during redox-controlled aggregation and disaggregation, respectively. The interactions between the polymer and the NPs are mediated by the reversible formation of polypseudorotaxanes, and give rise to architectures ranging from short chains composed of few nanoparticles to extended networks of nanoparticles crosslinked by the polymer. In the latter case, the polymer/nanoparticle aggregates precipitate from solution such that the polymer acts as a selective 'sponge' for the capture/release of the nanoparticles of different types.