Series of Mixed Valent Fe(II)Fe(I) Complexes That Model the Hox State of [FeFe]Hydrogenase: Redox Properties, Density-Functional Theory Investigation, and Reactivities with Extrinsic CO Academic Article uri icon

abstract

  • A series of asymmetrically disubstituted models of the active site of [FeFe]-hydrogenase, (mu-pdt)[Fe(CO) 2PMe 3][Fe(CO) 2NHC] (pdt = 1,3-propanedithiolate, NHC = IMes, 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene IMes ( 1), IMesMe, 1-methyl,3-(2,4,6-trimethylphenyl)imidazol-2-ylidene ( 2) or IMe, 1,3-bis(methyl)imidazol-2-ylidene ( 3)), have been synthesized and characterized. The one-electron oxidation of these complexes to generate mixed valent models of the H ox state of [FeFe]-hydrogenase, such as the previously reported (mu-pdt)(mu-CO)[Fe(CO) 2PMe 3][Fe(CO)IMes] (+) ( 1 ox ) (Liu, T.; Darensbourg, M. Y. J. Am. Chem. Soc. 2007, 129, 7008-7009) has been examined to explore the steric and electronic effects of different N-atom substituents on the stability and structure of the mixed valent cations. The differences in spectroscopic properties, structures, and relative stabilities of 1 ox , (mu-pdt)[Fe(CO) 2PMe 3][Fe(CO) 2IMesMe] (+) ( 2 ox ), and (mu-pdt)[Fe(CO) 2PMe 3]-[Fe(CO) 2IMe] (+) ( 3 ox ) are discussed in the context of both experimental and theoretical data. Of the three derivatives, only that with greatest steric bulk on the NHC ligand, 1 ox , shows a clear indication of a mu-CO by solution nu(CO) IR and yields to crystallization as a rotated form, commensurate with the two-Fe subsite of H ox. In addition, the reactivity of the complexes with extrinsic CO to form CO adducts and/or exchange with (13)CO is explored by experiment and by using density-functional theory calculations.

author list (cited authors)

  • Thomas, C. M., Liu, T., Hall, M. B., & Darensbourg, M. Y.

publication date

  • January 1, 2008 11:11 AM