The reaction of electrophiles with models of iron-iron hydrogenase: A switch in regioselectivity Conference Paper uri icon


  • Simple dithiolate-bridged dinuclear iron clusters of the form (-S(CH2)xS)[Fe(CO)2(PR3)]2 act as models of the active site of the enzyme iron-iron hydrogenase ([FeFe]H2ase). These complexes have been shown react with the electrophilic species, H+ and Et+(Et+ = CH3 CH2+) with differing regioselectivity; H+ reacts to form a 3c-2e- Fe-H-Fe bond, while Et+ reacts to form a new C-S bond. We have used density functional theory (DFT) calculations to examine the reaction of these two electrophilic species using the computational model (-SCH2CH2S)[Fe(CO)2(PH3)]2. In agreement with the experimental results, protonation of the Fe-Fe bond density is found to yield a much more stable complex than protonation of a bridging sulfur atom, while alkylation of a sulfur atom of the bridging thiolate is found to yield a much more stable complex than alkylation of the iron centers. Additional computations show that a mononuclear iron(II) complex with an Fe-E bond (E=H or Et) is significantly more stable than its constitutional isomer with iron(0) and an S-E bond. The instability of a bridging ethyl complex is attributed to the inability of the ethyl group, in contrast to a hydride, to form a stable 3c-2e- bond with the two iron centers. 2006 Elsevier B.V. All rights reserved.

published proceedings


author list (cited authors)

  • Tye, J. W., Darensbourg, M. Y., & Hall, M. B.

citation count

  • 13

complete list of authors

  • Tye, Jesse W||Darensbourg, Marcetta Y||Hall, Michael B

publication date

  • October 2006