Linkers and catalysts immobilized on oxide supports: New insights by solid-state NMR spectroscopy Academic Article uri icon


  • This review article describes classical and modern solid-state NMR methods that allow to gain insight into catalyst systems where one or two metal complexes are bound to oxide supports via bifunctional phosphine linkers, such as (EtO)3Si(CH2)3PPh2. Many aspects of the immobilized molecular catalysts can be elucidated with the corresponding NMR technique. The bulk of the support can be studied, as well as the interface of the support with the ethoxysilane. With respect to the linkers, their structural integrity and mobility are as easy to investigate by classical CP/MAS and high-resolution magic angle spinning (HRMAS) NMR techniques, as their adsorption behavior. Even electrostatic bonding to the support via phosphonium groups can be proven by solid-state NMR. For the immobilized catalysts, leaching, and even "horizontal" translational mobility effects, as probed by HRMAS NMR under "realistic conditions" in the presence of solvents, are described. © 2008 Elsevier B.V. All rights reserved.

author list (cited authors)

  • Blümel, J.

citation count

  • 82

publication date

  • November 2008