Simulation of the global contrail radiative forcing: A sensitivity analysis Academic Article uri icon

abstract

  • The contrail radiative forcing induced by human aviation activity is one of the most uncertain contributions to climate forcing. An accurate estimation of global contrail radiative forcing is imperative, and the modeling approach is an effective and prominent method to investigate the sensitivity of contrail forcing to various potential factors. We use a simple offline model framework that is particularly useful for sensitivity studies. The most-up-to-date Community Atmospheric Model version 5 (CAM5) is employed to simulate the atmosphere and cloud conditions during the year 2006. With updated natural cirrus and additional contrail optical property parameterizations, the RRTMG Model (RRTM-GCM application) is used to simulate the global contrail radiative forcing. Global contrail coverage and optical depth derived from the literature for the year 2002 is used. The 2006 global annual averaged contrail net (shortwave + longwave) radiative forcing is estimated to be 11.3 mW m -2. Regional contrail radiative forcing over dense air traffic areas can be more than ten times stronger than the global average. A series of sensitivity tests are implemented and show that contrail particle effective size, contrail layer height, the model cloud overlap assumption, and contrail optical properties are among the most important factors. The difference between the contrail forcing under all and clear skies is also shown. 2012. American Geophysical Union. All Rights Reserved.

published proceedings

  • GEOPHYSICAL RESEARCH LETTERS

altmetric score

  • 14.544

author list (cited authors)

  • Yi, B., Yang, P., Liou, K., Minnis, P., & Penner, J. E.

citation count

  • 20

complete list of authors

  • Yi, Bingqi||Yang, Ping||Liou, Kuo-Nan||Minnis, Patrick||Penner, Joyce E

publication date

  • December 2012