An efficient algorithm for truncating spatial domain in modeling light scattering by finite-difference technique Academic Article uri icon


  • The finite-difference time domain technique is one of the most robust and accurate numerical methods for the solution of light scattering by small particles with arbitrary composition and geometry. In practice, this method requires that the spatial domain for the computation of near-field be truncated. An absorbing boundary condition must be imposed in conjunction with this truncation. The performance of this boundary condition is essential to the stability of numerical computations and the reliability of results. In the present study, a new boundary condition, referred to as the mixed T algorithm, has been developed, which is a generalization of the transmitting boundary condition originally developed by Liao and co-workers. The present algorithm does not require spatial interpolation for wave values at interior grid points. In addition, it produces two minima of spurious reflections at small and large incident angles, allowing efficient absorption of the scattered waves at the boundary for large incident angles. When the third-order mixed T algorithm is used, the reflection coefficient of the boundary is less than 1% for incident angles from 0 to about 70. We find that the numerical instability associated with the transmitting boundary condition is caused by the location-dependent amplitude of outgoing waves in the vicinity of the boundary. For this reason, the mixed T algorithm is stabilized by consistently introducing diffusive coefficients into the boundary equation. When the stabilized algorithm is applied, the near-field within the truncated domain can be computed by using single-precision arithmetic without overflows for more than 105steps in the time-marching iteration. Finally, the new absorbing boundary condition is validated by carrying out numerical experiments involving the propagation of a TM wave excited by a sinusoidal point source, simultaneous simulation of the wave propagation in small and large domains, and the scattering of a TM wave by an infinite circular cylinder. 1998 Academic Press.

published proceedings


author list (cited authors)

  • Yang, P., & Liou, K. N.

citation count

  • 25

complete list of authors

  • Yang, P||Liou, KN

publication date

  • March 1998