Baroclinicity Influences on Storm Divergence and Stratiform Rain: Subtropical Upper-Level Disturbances Academic Article uri icon


  • Abstract Divergence structures associated with the spectrum of precipitating systems in the subtropics and midlatitudes are not well documented. A mesoscale model is used to quantify the relative importance different baroclinic environments have on divergence profiles for storms primarily caused by upper-level disturbances in southeastern Texas, a subtropical region. The divergence profiles simulated for a subset of the modeled storms are consistent with those calculated from an S-band Doppler radar. Realistic convective and stratiform divergence signals are also generated when applying a two-dimensional convectivestratiform separation algorithm to reflectivities derived from the mesoscale model, although the model appears to underestimate stratiform rain area. Divergence profiles from the modeled precipitating systems vary in magnitude and structure across the wide range of baroclinicities common in southeastern Texas. Barotropic storms more characteristic of the tropics generate the most elevated divergence (and thus diabatic heating) structures with the largest magnitudes. In addition, stratiform rain regions in barotropic storms contain thicker, more elevated midlevel convergence signatures than more baroclinic storms. As the degree of baroclinicity increases, stratiform area fractions generally increase while the levels of nondivergence (LNDs) decrease. However, some weakly baroclinic storms contain stratiform area fractions and/or divergence profiles with magnitudes and LNDs that are similar to barotropic storms, despite having lower tropopause heights and less deep convection. Additional convection forms after the passage of barotropic and weakly baroclinic storms that contain elevated divergence signatures, circumstantially suggesting that heating at upper levels may cause diabatic feedbacks that help to drive regions of persistent convection in the subtropics.

published proceedings


author list (cited authors)

  • Hopper, L., & Schumacher, C.

citation count

  • 6

complete list of authors

  • Hopper, Larry J Jr||Schumacher, Courtney

publication date

  • April 2009