Mechanisms for the Development of Locally Low-Dimensional Atmospheric Dynamics Academic Article uri icon


  • The complexity of atmospheric instabilities is investigated by a combination of numerical experiments and diagnostic tools that do not require the assumption of linear error dynamics. These tools include the well-established analysis of the local energetics of the atmospheric flow and the recently introduced ensemble dimension (E dimension). The E dimension is a local measure that varies in both space and time and quantifies the distribution of the variance between phase space directions for an ensemble of nonlinear model solutions over a geographically localized region. The E dimension is maximal, that is, equal to the number of ensemble members (k), when the variance is equally distributed between k phase space directions. The more unevenly distributed the variance, the lower the E dimension. Numerical experime nts with the state-of-the-art operational Global Forecast System (GFS) of the National Centers for Environmental Prediction (NCEP) at a reduced resolution are carried out to investigate the spatiotemporal evolution of the E dimension. This evolution is characterized by an initial transient phase in which coherent regions of low dimensionality develop through a rapid local decay of the E dimension. The typical duration of the transient is between 12 and 48 h depending on the flow; after the initial transient, the E dimension gradually increases with time. The main goal of this study is to identi fy processes that contribute to transient local low-dimensional behavior. Case studies are presented to show that local baroclinic and barotropic instabilities, downstream development of upper-tropospheric wave packets, phase shifts of finite amplitude waves, anticyclonic wave breaking, and some combinations of these processes can all play crucial roles in lowering the E dimension. The practical implication of the results is that a wide range of synopt ic-scale weather events may exist whose prediction can be significantly improved in the short and early medium range by enhancing the prediction of only a few local phase space directions. This potential is demonstrated by a reexamination of the targeted weather observations missions from the 2000 Winter Storm Reconnaissance (WSR00) program. © 2005 American Meteorological Society.

author list (cited authors)

  • Oczkowski, M., Szunyogh, I., & Patil, D. J.

citation count

  • 35

publication date

  • April 2005