n113367SE Academic Article uri icon

abstract

  • Artificial neural networks (ANNs) may be of significant value in extracting vegetation type information in complex vegetation mapping problems, particularly in coastal wetland environments. Unsupervised, self-organizing ANNs have not been employed as frequently as supervised ANNs for vegetation mapping tasks, and further remote sensing research involving fuzzy ANNs is also needed. In this research, the utility of a fuzzy unsupervised ANN, specifically a fuzzy learning vector quantization (FLVQ) ANN, was investigated in the context of hyperspectral AVIRIS image classification. One key feature of the neural approach is that unlike conventional hyperspectral data processing methods, endmembers for a given scene, which can be difficult to determine with confidence, are not required for neural analysis. The classification accuracy of FLVQ was comparable to a conventional supervised multi-layer perceptron, trained with backpropagation (MLP) (KHAT (K) accuracy: 82.82% and 84.66%, respectively; normalized accuracy: 74.60% and 75.85%, respectively), with no significant difference at the 95% confidence level. All neural algorithms in the experiment yielded significantly higher classification accuracies than the conventional endmember-based hyperspectral mapping method assessed (i.e., matched filtering, where K accuracy = 61.00% and normalized accuracy = 57.96%). FLVQ was also dramatically more computationally efficient than the baseline supervised and unsupervised ANN algorithms tested, including the MLP and the Kohonen self-organizing map (SOM), respectively. The 400-neuron FLVQ network required only 3.6% of the computation time used by the MLP network, and only 5.9% of the MLP time was used by the 588-neuron FLVQ network. In addition, the 400-neuron FLVQ used only 16.7% of the time used by the 400-neuron SOM for model development. 2005 Elsevier Inc. All rights reserved.

published proceedings

  • Remote Sensing of Environment

author list (cited authors)

  • Filippi, A. M., & Jensen, J. R.

publication date

  • January 1, 2006 11:11 AM