Temporal and spatial variability of ADCP backscatter on a continental slope Academic Article uri icon

abstract

  • Previous research has shown that acoustic volume backscatter intensity (ABI) from an acoustic Doppler current profiler (ADCP) can be a proxy for zooplankton and micronekton biomass over time or space. As part of NOAA's Sperm Whale and Acoustic Monitoring Program (SWAMP) and a follow-on ichthyoplankton survey (SEAMAP), a ship-mounted 300-kHz broadband ADCP collected current velocity and ABI data from July to September 2001 in the northeast Gulf of Mexico. The present study sought to compare/contrast the variability in ABI both spatially and temporally using the data obtained from the SWAMP and SEAMAP cruises. The ADCP data were averaged over 2 min and 4 m vertical bins from 16 to 56 m below sea surface. Usually, ABI in this epipelagic realm averaged 3 dB higher at night than during the day because of diel vertical migration of zooplankton and micronekton into these near surface waters, while in a region having cyclonic circulation along the continental margin of the northeast Gulf, ABI averaged 6 dB higher than in an anticyclonic warm filament there. Wet displacement volumes (WDV) were measured using Bongo net tows to estimate that a 6 dB increase in ABI was equivalent to an increase from 9 to 10.5 ml WDV of plankton+micronekton per 100 m 3. Sperm whale abundance has been shown to be positively correlated with regions of locally high ABI, and sperm whale sightings during SWAMP were also compared to our ABI measurements. Spectral and Empirical Orthogonal Function analyses were performed on subsets of the ABI data for which 10-14 day time series were available and showed 2-3 day periodicity near-surface, corresponding to spatial scales of 10 1-10 2 km. During summer 2001, the mesoscale circulation along the subtropical continental margin in the northeastern Gulf was found to be the principal forcing factor for low frequency ABI variation. Increased backscatter observations are also correlated with offshore flow from the continental margin to the deep ocean, particularly when the offshore flow is close to a river delta. 2004 Elsevier Ltd. All rights reserved.

published proceedings

  • CONTINENTAL SHELF RESEARCH

author list (cited authors)

  • Sindlinger, L. R., Biggs, D. C., & DiMarco, S. F.

citation count

  • 8

complete list of authors

  • Sindlinger, LR||Biggs, DC||DiMarco, SF

publication date

  • January 2005