ZnO and conjugated polymer bulk heterojunction solar cells containing ZnO nanorod photoanode.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Hybrid solar cells based on poly(3-hexylthiophene) (P3HT) and ZnO nanoparticle bulk heterojunctions (BHJ) combined with ZnO nanorod arrays were fabricated and analyzed. The dispersion of ZnO nanoparticles in P3HT is assisted by dye molecules, which function as a surface modifier for ZnO nanoparticles to improve compatibility between ZnO nanoparticles and P3HT. Compared to the ZnO nanorod/P3HT devices, the optimized cells with the ZnO nanoparticles dispersed in P3HT can significantly increase the short-circuit current and the overall power conversion efficiency from 1.36 mA cm(-2) to 2.51 mA cm(-2) and from 0.18% to 0.45% with 625 nm long ZnO nanorod arrays, respectively. The novel scheme of using the light-absorbing dye molecules both as light absorber and as surfactant for ZnO nanoparticles presents a facile route towards forming bulk heterojunction hybrid solar cells based on semiconducting nanomaterials and conjugated polymers.