Craze-like damage in a core-shell rubber-modified epoxy system Academic Article uri icon

abstract

  • Toughening mechanisms of a core-shell rubber-modified epoxy were investigated using various microscopic techniques. It was found that the crack tip damage zone of the rubber-modified epoxy appeared to consist of multiple craze-like damage and massive shear banding using optical microscopy. The craze-like damage was further analysed using transmission electron microscopy (TEM) and actually found to be a collection of line arrays of highly cavitated rubber particles. The matrix material around the cavitated particles appeared to have plastically deformed, while the material outside of the array was undeformed. The structure and physical nature of this highly localized dilatational process are substantially different from those of the commonly known craze. The sequence of events leading to the formation of these craze-like line arrays is discussed. © 1992 Chapman & Hall.

author list (cited authors)

  • Sue, H.

citation count

  • 111

publication date

  • June 1992