Rheology of disentangled multiwalled carbon nanotubes dispersed in uncured epoxy fluid.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
The rheological behaviors of clustered and disentangled multiwalled carbon nanotubes (MWCNTs) dispersed in a stable, non-reactive Newtonian epoxy fluid have been investigated. Suspensions of untreated and chemically oxidized MWCNTs in epoxy show strong rate-dependent behavior and long-time elastic response that is characteristic of a flocculated microstructure. Suspensions of disentangled MWCNTs in epoxy were prepared by a functionalization reaction with nitrobenzene, and show distinct rheological behavior that is attributed to the motion and rotation of the individual nanoparticles. Characteristic features of the disentangled MWCNTs in epoxy are a lack of low-frequency plateau in storage modulus and shear thickening behavior at high shear rate. The rheological behavior is discussed on the basis of continuum-level predictions for the motion of individual, semiflexible fibers under shearing flows. Implications of MWCNT disentanglement on fundamental study and applications of MWCNT-filled systems are discussed.