Thermomechanical characterization of the nonlinear rate-dependent response of shape memory polymers Conference Paper uri icon

abstract

  • This study presents the testing techniques used to thermomechanically characterize the material behavior of a shape memory polymer as well as the resulting data. An innovative visual-photographic apparatus, known as a Vision Image Correlation system was used to measure the strain. A series of tensile tests were performed on specimens in which strain levels of 10%, 25%, 50%, and 100% were applied to the material while above its glass transition temperature. After deforming the material to a specified applied strain, the material was constrained and cooled to below the glass transition temperature. Finally, the specimen was heated again to above the transition temperature, and the resulting shape recovery profile was measured. The dependence of the recoverable strain on the heating and cooling rate was investigated in this work. Results showed that strain recovery occurred in a nonlinear fashion with respect to temperature. Results also indicated that the ratio of recoverable strain to the applied strain was a constant value, and was independent of the level of applied strain.

name of conference

  • The 15th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring

published proceedings

  • Behavior and Mechanics of Multifunctional and Composite Materials 2008

author list (cited authors)

  • Volk, B. L., Lagoudas, D. C., & Chen, Y.

editor list (cited editors)

  • Dapino, M. J., & Ounaies, Z.

publication date

  • January 1, 2008 11:11 AM

publisher