n111503SE Academic Article uri icon

abstract

  • The grain size dependence of the flow strength of polycrystals is analyzed using plane strain, discrete dislocation plasticity. Dislocations are modeled as line singularities in a linear elastic solid and plasticity occurs through the collective motion of large numbers of dislocations. Constitutive rules are used to model lattice resistance to dislocation motion, as well as dislocation nucleation, dislocation annihilation and the interaction with obstacles. The materials analyzed consist of micron scale grains having either one or three slip systems and two types of grain arrangements: either a checker-board pattern or randomly dispersed with a specified volume fraction. Calculations are carried out for materials with either a high density of dislocation sources or a low density of dislocation sources. In all cases, the grain boundaries are taken to be impenetrable to dislocations. A Hall-Petch type relation is predicted with Hall-Petch exponents ranging from 0.3 to 1.6 depending on the number of slip systems, the grain arrangement, the dislocation source density and the range of grain sizes to which a Hall-Petch expression is fit. The grain size dependence of the flow strength is obtained even when no slip incompatibility exists between grains suggesting that slip blocking/transmission governs the Hall-Petch effect in the simulations. 2007 Elsevier Ltd. All rights reserved.

published proceedings

  • International Journal of Plasticity

author list (cited authors)

  • Balint, D. S., Deshpande, V. S., Needleman, A., & Van der Giessen, E.

publication date

  • January 1, 2008 11:11 AM