The effect of plasticity on dynamic crack growth across an interface
Academic Article
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
The effect of plasticity on the growth of a crack originating in an elastic solid across an interface and into an elastic-viscoplastic solid is analyzed numerically. The analyses are carried out within a framework where the continuum is characterized by two constitutive relations; one relating the stress and strain in the bulk material and the other relating the traction and separation across a specified set of cohesive surfaces. Crack initiation, crack growth and crack arrest arise naturally as a consequence of the imposed loading, without a priori assumptions concerning criteria for crack growth and for crack path selection. Full transient analyses are carried out. Various values of initial flow strength and cohesive strength of the elastic-viscoplastic solid and of cohesive strength of the interface are considered. With the ratio of cohesive strength of the elastic-viscoplastic solid to cohesive strength of the interface fixed, increasing the ratio of cohesive strength to initial flow strength for the elastic-viscoplastic solid is found to promote crack deflection into the interface.