Static and dynamic forces between adsorbed polyelectrolyte layers (quaternized poly-4-vinylpyridine)
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Static forces (a combination of steric and electrostatic interactions) and dynamic shear forces (resulting from interactions between polymer chains) were measured between quaternized poly-4-vinylpyridine layers (QPVP) adsorbed onto mica from 1 mM borate buffer with or without added 0.25 M NaCl. At the polyelectrolyte concentration chosen. 0.4 mg mL-1 extended layers were formed at all adsorption conditions. The adsorbed amount of 98% quaternized poly-4-vinylpyridine was lower at low ionic strength than of 14% quaternized, and increased with added salt. Layers formed by one-step adsorption showed a predominantly elastic response to small-amplitude oscillatory shear in the frequency range 0.13-130 Hz. In the case of two-step adsorption, the confined layers allowed viscous dissipation of similar magnitude as the elastic, which suggests that additional chains adsorbing at high salt concentration onto a preformed layer had fewer segments in contact with the solid surface.