Polyelectrolyte Multilayers of Weak Polyacid and Cationic Copolymer: Competition of Hydrogen-Bonding and Electrostatic Interactions
Academic Article
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
We report on the competitive role of hydrogen bonding and electrostatic interactions in growth and stability of polyelectrolyte multilayers (PEMs) in a wide range of pH. The system was a cationic copolymer of acrylamide and dimethyldiallylammonium chloride (PAAm-DMDAAC) containing 50% cationic units and poly(methacrylic acid) (PMAA) as a polyacid. The amounts of polymers adsorbed and ionization of carboxylic groups within a film were quantified using in situ FTIR-ATR (Fourier transform infrared spectroscopy in attenuated total reflection). The results were contrasted with the stability of films formed from polyacrylamide (PAAm) and PMAA. In the PAAm/PMAA system, interlayer adhesion occurred through hydrogen-bonding interactions, and the multilayer decomposed at pH > 5.5. However, the PAAm-DMDAAC/PMAA multilayers produced at law pH could be stabilized at a pH as high as 8 with transition to electrostatic interactions. With films deposited at pH = 2 from low ionic strength solutions, asymmetric release of PMAA was observed with no mass loss for the polycation in the range of pH 2-7. With thicker PAAm-DMDAAC/PMAA films, deposited at pH = 2 in the presence of 0.15 M NaCl, multilayers showed significant mass loss at pH > 5.5 However, stable polymer multilayers could be produced in this pH range by growing PAAm-DMDAAC/PMAA multilayers at pH = 2 and exposing them to higher pH values in the presence of 0.4 mg/mL PAAm-DMDAAc solutions.