Fundamental Study of Hydrogen Segregation at Vacancy and Grain Boundary in Palladium
Institutional Repository Document
Overview
Research
View All
Overview
abstract
We have studied the fundamental process of hydrogen binding at interstitial, vacancy and grain boundary (GB) in palladium crystals using Density-Functional Theory. It showed that hydrogen prefers to occupy the octahedral interstitial site in Pd matrix, however a stable H-vacancy complex with most H occupations would contain up to eight hydrogen atoms surrounding the vacancy at tetrahedral sites. Furthermore, H presence assists the pairing or formation of nearby vacancies, which in agreement with previous suggestions by both experiment and theory investigation. Also, this observation could imply about a hydrogen embrittlement (HE) mechanism through the connections of microvoid and cracks. The segregation of hydrogen at grain boundary, nevertheless, has shown a different effect. High H accumulation results in grain boundary extension, which is related the HE mechanism of grain decohesion observed by experiments.