A Computational Framework for Analyzing the Dynamic Behavior and Failure of Amorphous Polymers
Conference Paper
Overview
Identity
Additional Document Info
View All
Overview
abstract
A framework is presented for analyzing the low-temperature inelastic behavior of a class of amorphous polymers with full account taken of finite deformations and inertial effects. Viscoplastic constitutive equations are used and supplemented with a new model for craze initiation, growth and breakdown. The capabilities of the framework are illustrated by finite element solutions of initial/boundary-value problems under plane strain conditions. Three illustrative benchmark problems are used to evaluate the proposed implementation: shear band formation and propagation under compression, dynamic response under impact and quasi-static response of a polymer composite unit-cell subject to uniaxial tension transverse to fibers.