Variations in productivity and eolian fluxes in the northeastern Arabian Sea during the past 110 ka Academic Article uri icon

abstract

  • High-resolution (one to two samples/ka) radionuclide proxy records from core 93KL in the northeastern Arabian Sea provide evidence for millennial climate variability over the past 110 ka. We interpret 230Th-normalized 232Th fluxes as a proxy for eolian input, and authigenic uranium concentrations as a proxy for past productivity. We attribute orbital and suborbital variations in both proxies to changes in the intensity of the southwest Indian Ocean monsoon. The highest 230Th-normalized 232Th fluxes occur at times that are consistent with the timing of the Younger Dryas, Heinrich events 1-7 and cold Dansgaard-Oeschger stadial events recorded in the GISP2 ice core. Such high dust fluxes may be due to a weakened southwest monsoon in conjunction with strengthened northwesterlies from the Arabian Peninsula and Mesopotamia. Authigenic uranium concentrations, on the other hand, are highest during warm Dansgaard-Oeschger interstadials when the southwest monsoon is intensified relative to the northwesterly winds. Our results also indicate that on orbital timescales maximum average eolian fluxes coincide with the timing of marine isotopic stage (MIS) 2 and 4, while minimum fluxes occur during MIS 1, 3 and 5. Although the forcing mechanism(s) controlling suborbital variabilities in monsoonal intensity is still debated, our findings suggest an atmospheric teleconnection between the low-latitude southwest monsoon and North Atlantic climate. 2004 Elsevier B.V. All rights reserved.

published proceedings

  • Earth and Planetary Science Letters

author list (cited authors)

  • Pourmand, A., Marcantonio, F., & Schulz, H.

citation count

  • 60

complete list of authors

  • Pourmand, Ali||Marcantonio, Franco||Schulz, Hartmut

publication date

  • April 2004