Aeolian dune interactions and dune‐field pattern formation: White Sands Dune Field, New Mexico Academic Article uri icon


  • Pattern formation is a fundamental aspect of self-organization in fields of bedforms. Time-series aerial photographs and airborne light detection and ranging show that fully developed, crescentic aeolian dunes at White Sands, New Mexico, interact and the dune pattern organizes in systematically similar ways as wind ripples and subaqueous dunes and ripples. Documented interactions include: (i) merging; (ii) lateral linking; (iii) defect repulsion; (iv) bedform repulsion; (v) off-centre collision; (vi) defect creation; and (vii) dune splitting. Merging and lateral linking are constructive interactions that give rise to a more organized pattern. Defect creation and bedform splitting are regenerative interactions that push the system to a more disorganized state. Defect/bedform repulsion and off-centre collision cause significant pattern change, but appear to be neutral in overall pattern development. Measurements of pattern parameters (number of dunes, crest length, defect density, crest spacing and dune height), dune migration rates, and the type and frequency of dune interactions within a 3500 m box transect from the upwind margin to the core of the dune field show that most pattern organization occurs within the upwind field. Upwind dominance by constructive interactions yields to neutral and regenerative interactions in the field centre. This spatial change reflects upwind line source and sediment availability boundary conditions arising from antecedent palaeo-lake topography. Pattern evolution is most strongly coupled to the pattern parameters of dune spacing and defect density, such that spatially or temporally the frequency of bedform interactions decreases as the dunes become further apart and have fewer defects. © 2010 The Authors. Journal compilation © 2010 International Association of Sedimentologists.

author list (cited authors)

  • EWING, R. C., & KOCUREK, G. A.

citation count

  • 93

publication date

  • February 2010