Effect of Irrigation Timing on Root Zone Soil Temperature, Root Growth and Grain Yield and Chemical Composition in Corn Academic Article uri icon

abstract

  • 2016 by the authors; licensee MDPI, Basel, Switzerland. High air temperatures during the crop growing season can reduce harvestable yields in major agronomic crops worldwide. Repeated and prolonged high night air temperature stress may compromise plant growth and yield. Crop varieties with improved heat tolerance traits as well as crop management strategies at the farm scale are thus needed for climate change mitigation. Crop yield is especially sensitive to night-time warming trends. Current studies are mostly directed to the elevated night-time air temperature and its impact on crop growth and yield, but less attention is given to the understanding of night-time soil temperature management. Delivering irrigation water through drip early evening may reduce soil temperature and thus improve plant growth. In addition, corn growers typically use high-stature varieties that inevitably incur excessive respiratory carbon loss from roots and transpiration water loss under high night temperature conditions. The main objective of this study was to see if root-zone soil temperature can be reduced through drip irrigation applied at night-time, vs. daytime, using three corn hybrids of different above-ground architecture in Uvalde, TX where day and night temperatures during corn growing season are above U.S. averages. The experiment was conducted in 2014. Our results suggested that delivering well-water at night-time through drip irrigation reduced root-zone soil temperature by 0.6 C, increase root length five folds, plant height 2%, and marginally increased grain yield by 10%. However, irrigation timing did not significantly affect leaf chlorophyll level and kernel crude protein, phosphorous, fat and starch concentrations. Different from our hypothesis, the shorter, more compact corn hybrid did not exhibit a higher yield and growth as compared with taller hybrids. As adjusting irrigation timing would not incur an extra cost for farmers, the finding reported here had immediate practical implications for farm scale adaptation to hot environments.

published proceedings

  • AGRONOMY-BASEL

author list (cited authors)

  • Dong, X., Xu, W., Zhang, Y., & Leskovar, D. I.

citation count

  • 14

complete list of authors

  • Dong, Xuejun||Xu, Wenwei||Zhang, Yongjiang||Leskovar, Daniel I

publication date

  • June 2016

publisher