BOTRYTIS-INDUCED KINASE1 Modulates Arabidopsis Resistance to Green Peach Aphids via PHYTOALEXIN DEFICIENT4 Academic Article uri icon

abstract

  • BOTRYTIS-INDUCED KINASE1 (BIK1) plays important roles in induced defense against fungal and bacterial pathogens in Arabidopsis (Arabidopsis thaliana). Its tomato (Solanum lycopersicum) homolog is required for host plant resistance to a chewing insect herbivore. However, it remains unknown whether BIK1 functions in plant defense against aphids, a group of insects with a specialized phloem sap-feeding style. In this study, the potential role of BIK1 was investigated in Arabidopsis infested with the green peach aphid (Myzus persicae). In contrast to the previously reported positive role of intact BIK1 in defense response, loss of BIK1 function adversely impacted aphid settling, feeding, and reproduction. Relative to wild-type plants, bik1 displayed higher aphid-induced hydrogen peroxide accumulation and more severe lesions, resembling a hypersensitive response (HR) against pathogens. These symptoms were limited to the infested leaves. The bik1 mutant showed elevated basal as well as induced salicylic acid and ethylene accumulation. Intriguingly, elevated salicylic acid levels did not contribute to the HR-like symptoms or to the heightened aphid resistance associated with the bik1 mutant. Elevated ethylene levels in bik1 accounted for an initial, short-term repellence. Introducing a loss-of-function mutation in the aphid resistance and senescence-promoting gene PHYTOALEXIN DEFICIENT4 (PAD4) into the bik1 background blocked both aphid resistance and HR-like symptoms, indicating bik1-mediated resistance to aphids is PAD4 dependent. Taken together, Arabidopsis BIK1 confers susceptibility to aphid infestation through its suppression of PAD4 expression. Furthermore, the results underscore the role of reactive oxygen species and cell death in plant defense against phloem sap-feeding insects.

author list (cited authors)

  • Lei, J., Finlayson, S. A., Salzman, R. A., Shan, L., & Zhu-Salzman, K.

citation count

  • 48

publication date

  • June 2014