The specific activities of Shiga-like toxin type II (SLT-II) and SLT-II-related toxins of enterohemorrhagic Escherichia coli differ when measured by Vero cell cytotoxicity but not by mouse lethality.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Characteristically, enterohemorrhagic Escherichia coli (EHEC) strains produce Shiga-like toxin type I (SLT-I), SLT-II, or both of these immunologically distinct cytotoxins. No antigenic or receptor-binding variants of SLT-I have been identified, but a number of SLT-II-related toxins have been described. Because EHEC O91:H21 strain B2F1, which produces two SLT-II-related toxins, is exquisitely virulent in an orally infected, streptomycin-treated mouse model (oral 50% lethal dose [LD50], < 10 organisms), we asked whether the pathogenicity of strain B2F1 was a consequence of SLT-II-related toxin production. For this purpose, we compared the lethality of orally administered E. coli DH5 alpha (Strr) strains that produced different cytotoxic levels of SLT-II, SLT-IIvha (cloned from B2F1), SLT-IIvhb (also cloned from B2F1), or SLT-IIc (cloned from EHEC O157:H7 strain E32511) on Vero cells. We also calculated the specific activities of purified SLT-IIvhb and SLT-II in intraperitoneally injected mice and on Vero cells. The two purified toxins were equally toxic for mice, but SLT-IIvhb was approximately 100-fold less active than SLT-II on Vero cells and bound to the glycolipid receptor Gb3 with lower affinity than did SLT-II. In addition, characterization of SLT-II-related toxin-binding (B) subunit mutants generated in this study revealed that the reduced in vitro cytotoxic levels of the SLT-II-related toxins were due to Asn-16 in the B subunit. Taken together, these findings do not support the idea that B2F1 is uniquely virulent because of the in vivo toxicity of SLT-II-related toxins but do demonstrate differences in in vitro cytotoxic activity among the SLT-II group produced by human EHEC isolates.