Neutrophil-dependent augmentation of PAF-induced vasoconstriction and albumin flux in coronary arterioles.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Platelet-activating factor (PAF) has been implicated in the pathogenesis of ischemic heart disease, reperfusion injury, and inflammatory reactions. Although neutrophils have been shown to primarily mediate PAF-induced microvascular dysfunction, the vasoactive effect of PAF and its neutrophil-dependent mechanism have not been directly and systematically studied in coronary resistance vessels. Therefore, the aim of this study was to examine the effects of PAF on coronary arteriolar function and neutrophil dynamics using an isolated and perfused microvessel preparation. Topical application of PAF to the vessels induced a dose-dependent decrease in the diameter but an increase in the apparent permeability coefficient of albumin. Disruption of the endothelium abolished the vasomotor response to PAF, and perfusion of neutrophils significantly augmented PAF-induced changes in vasomotor tone and permeability. Furthermore, the interaction between neutrophils and the endothelium was studied in the intact perfused coronary arterioles. Under control conditions, there were no adherent neutrophils observed in the vessels at varied intraluminal flow velocities. However, administration of PAF caused neutrophil adhesion to the endothelium of coronary arterioles at low flow velocities. Western blot analysis indicated that PAF upregulated the expression of intercellular adhesion molecule-1 in cultured coronary microvascular endothelial cells. Taken together, the results suggest that 1) PAF induces vasoconstriction and hyperpermeability in coronary arterioles via an endothelium-dependent and neutrophil-mediated mechanism, and 2) PAF is able to stimulate neutrophil adhesion in coronary arterioles under a condition of low flow rate.