Yeon, Jaeheum 1981- (2012-12). Risk Framework for the Next Generation Nuclear Power Plant Construction. Master's Thesis. Thesis uri icon

abstract

  • Uncertainty can be either an opportunity or a risk. Every construction project begins with the expectation of project performance. To meet the expectation, construction projects need to be managed through sound risk assessment and management beginning with the front-end of the project life cycle to check the feasibility of a project. The Construction Industry Institute's (CII) International Project Risk Assessment (IPRA) tool has been developed, successfully used for a variety of heavy industry sector projects, and recently elevated to Best Practice status. However, its current format is inadequate to address the unique challenges of constructing the next generation of nuclear power plants (NPP). To understand and determine the risks associated with NPP projects, the goal of this thesis is to develop tailored risk framework for NPP projects that leverages and modifies the existing IPRA process. The IPRA has 82 elements to assess the risks associated with international construction projects. The modified IPRA adds five major issues (elements) to consider the unique risk factors of typical NPP projects based upon a review of the literature and an evaluation of the performance of previous nuclear-related facilities. The modified IPRA considers the sequence of NPP design that ultimately impacts the risks associated with plant safety and operations. Historically, financial risks have been a major chronic problem with the construction of NPPs. This research suggests that unstable regulations and the lack of design controls and oversight are significant risk issues. This thesis includes a consistency test to initially validate whether the asserted risks exist in actual conditions. Also, an overall risk assessment is performed based on the proposed risk framework for NPP and the list of assessed risk is proposed through a possible scenario. After the assessment, possible mitigation strategies are also provided against the major risks as a part of this thesis. This study reports on the preliminary findings for developing a new risk framework for constructing nuclear power plants. Future research is needed for advanced verification of the proposed elements. Follow-on efforts should include verification and validation of the proposed framework by industry experts and methods to quantify and evaluate the performance and risks associated with the multitude of previous NPP projects.
  • Uncertainty can be either an opportunity or a risk. Every construction project begins with the expectation of project performance. To meet the expectation, construction projects need to be managed through sound risk assessment and management beginning with the front-end of the project life cycle to check the feasibility of a project.

    The Construction Industry Institute's (CII) International Project Risk Assessment (IPRA) tool has been developed, successfully used for a variety of heavy industry sector projects, and recently elevated to Best Practice status. However, its current format is inadequate to address the unique challenges of constructing the next generation of nuclear power plants (NPP). To understand and determine the risks associated with NPP projects, the goal of this thesis is to develop tailored risk framework for NPP projects that leverages and modifies the existing IPRA process.

    The IPRA has 82 elements to assess the risks associated with international construction projects. The modified IPRA adds five major issues (elements) to consider the unique risk factors of typical NPP projects based upon a review of the literature and an evaluation of the performance of previous nuclear-related facilities. The modified IPRA considers the sequence of NPP design that ultimately impacts the risks associated with plant safety and operations. Historically, financial risks have been a major chronic problem with the construction of NPPs. This research suggests that unstable regulations and the lack of design controls and oversight are significant risk issues.

    This thesis includes a consistency test to initially validate whether the asserted risks exist in actual conditions. Also, an overall risk assessment is performed based on the proposed risk framework for NPP and the list of assessed risk is proposed through a possible scenario. After the assessment, possible mitigation strategies are also provided against the major risks as a part of this thesis.

    This study reports on the preliminary findings for developing a new risk framework for constructing nuclear power plants. Future research is needed for advanced verification of the proposed elements. Follow-on efforts should include verification and validation of the proposed framework by industry experts and methods to quantify and evaluate the performance and risks associated with the multitude of previous NPP projects.

publication date

  • December 2012