Ravishankar, Arun (2011-05). Finite Element Analysis of Indentation in Fiber-Reinforced Polymer Composites. Master's Thesis. Thesis uri icon

abstract

  • This thesis employs a finite element (FE) method for numerically simulating the mechanical response of constituents in a fiber-reinforced polymer (FRP) composite to indentation. Indentation refers to a procedure that subsumes a rigid indenter of specific geometry to impress the surface of a relatively softer material, with a view of estimating its mechanical properties. FE analyses are performed on a two-dimensional simplified microstructure of the FRP composite comprising perfectly bonded fiber, interphase and matrix sections. Indentation response of the constituents is first examined within the context of linearized elasticity. Time-dependent response of the polymer matrix is invoked by modeling the respective constituent section as a linear isotropic viscoelastic material. Furthermore, indentation responses to non-mechanical stimulus, like moisture absorption, is also simulated through a sequentially coupled analysis. A linear relationship describing the degradation of elastic moduli of the individual constituents with increasing moisture content has been assumed. The simulations subsume a point load idealization for the indentation load eventually substituted by indenter tips with conical and spherical profiles. Results from FE analyses in the form of load-displacement curves, displacement contours and stress contours are presented and discussed. With the application of concentrated load on linearly elastic constituents for a given/known degree of heterogenity in the FRP, simulations indicated the potential of indentation technique for determining interphase properties in addition to estimating the matrix-fiber interphase bond strength. Even with stiffer surrounding constituents, matrix characterization was rendered difficult. However, fiber properties were found to be determinable using the FE load-displacement data, when the load-displacement data from experimentation is made available. In the presence of a polymer (viscoelastic) matrix, the surrounding elastic constituents could be characterized for faster loading rates when viscoelastic effects are insignificant. Displacements were found to be greater in the presence of a polymer matrix and moisture content in comparison with a linearly elastic matrix and dry state. As one would expect, the use of different indenter tips resulted in varying responses. Conical tips resulted in greater displacements while concentrated load produced greater stresses. Further it was found that, despite the insignificant effects due to surrounding constituents, analytical (Flamant) solution for concentrated, normal force on a homogeneous, elastic half-plane becomes inapplicable in back calculating the elastic moduli of individual FRP constituents. This can be attributed to the finite domain and the associated boundary conditions in the problem of interest.
  • This thesis employs a finite element (FE) method for numerically simulating the mechanical response of constituents in a fiber-reinforced polymer (FRP) composite

    to indentation. Indentation refers to a procedure that subsumes a rigid indenter of specific geometry to impress the surface of a relatively softer material, with a

    view of estimating its mechanical properties. FE analyses are performed on a two-dimensional simplified microstructure of the FRP composite comprising perfectly bonded fiber, interphase and matrix sections. Indentation response of the constituents is first examined within the context of linearized elasticity. Time-dependent response of the polymer matrix is invoked by modeling the respective constituent section as a linear isotropic viscoelastic material. Furthermore, indentation responses to non-mechanical stimulus, like moisture absorption, is also simulated through a sequentially coupled analysis. A linear relationship describing the degradation of elastic moduli of the individual constituents with increasing moisture content has been assumed. The simulations subsume a point load idealization for the indentation load eventually substituted by indenter tips with conical and spherical profiles. Results from FE analyses in the form of load-displacement curves, displacement contours and stress contours are presented and discussed.



    With the application of concentrated load on linearly elastic constituents for a given/known degree of heterogenity in the FRP, simulations indicated the potential of indentation technique for determining interphase properties in addition to estimating the matrix-fiber interphase bond strength. Even with stiffer surrounding constituents, matrix characterization was rendered difficult. However, fiber properties were found

    to be determinable using the FE load-displacement data, when the load-displacement data from experimentation is made available. In the presence of a polymer (viscoelastic) matrix, the surrounding elastic constituents could be characterized for faster loading rates when viscoelastic effects are insignificant. Displacements were found to be greater in the presence of a polymer matrix and moisture content in comparison with a linearly elastic matrix and dry state. As one would expect, the use of different indenter tips resulted in varying responses. Conical tips resulted in greater displacements while concentrated load produced greater stresses. Further it was found that, despite the insignificant effects due to surrounding constituents, analytical (Flamant) solution for concentrated, normal force on a homogeneous, elastic half-plane becomes inapplicable in back calculating the elastic moduli of individual FRP constituents. This can be attributed to the finite domain and the associated boundary conditions in the problem of interest.

publication date

  • May 2011